nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.50 459-467
基于瞬态漏源电流变化的SiC MOSFET陷阱表征
基金项目(Foundation): 国家自然科学基金重点项目(62334002);国家自然科学基金面上项目(62074009); 北京市自然科学基金-小米创新联合基金(L233023)
邮箱(Email):
DOI: 10.13290/j.cnki.bdtjs.2025.05.005
摘要:

SiC MOSFET栅极氧化物附近存在的陷阱缺陷造成其在高温高压场景下出现许多可靠性问题。提出了完整的基于瞬态电流法的陷阱表征方案,结合贝叶斯迭代反卷积算法实现对陷阱位置、时间常数和激活能的表征。基于自建陷阱测试平台在栅极和漏极施加不同组合的电学偏置,表征了微秒量级的两个陷阱,其时间常数分别为2×10-5s和2.5×10-4s,并观察到SiC MOSFET中存在同时受栅源电压和漏源电压影响的陷阱,这种现象在沟槽型器件中尤其显著,根据此特性可以分析陷阱的位置。本研究丰富了陷阱表征的信息,为陷阱的定位和表征提供了新的思路。

Abstract:

Trap defects near the gate oxide of SiC MOSFETs cause many reliability problems in high-temperature and high-voltage scenarios.A complete trap characterization scheme based on the transient current method was proposed,which was combined with the Bayesian iteration inverse convolution algorithm to achieve the characterization of the trap locations,time constants and activation energies.Based on the self-constructed trap test platform with different combinations of electrical bias applied to the gate and drain,two traps in the microsecond scale with time constants of 2×10-5 s and 2.5×10-4 s respectively were characterized.It is also observed that there are traps in SiC MOSFETs that are affected by both gate-source and drain-source voltages,and this phenomenon is especially significant in trench-type devices,and the location of the traps can be analyzed based on this characteristic.This study enriches the information of trap characterization and provides a new idea for the location and characterization of traps.

参考文献

[1]PAN S J,FENG S W,LI X,et al.Identifying the properties of traps in GaN high-electron-mobility transistors via amplitude analysis based on the voltagetransient method[J].IEEE Transactions on Electron Devices,68(11):5541-5546.

[2]TANIMOTO Y,SAITO A,MATSUURA K,et al.Power-loss prediction of high-voltage SiC-MOSFET circuits with compact model including carrier-trap influences[J].IEEE Transactions on Power Electronics,2016,31(6):4509-4516.

[3] SOZZA A,DUA C,MORVAN E,et al.Evidence of traps creation in GaN/AlGaN/GaN HEMTs after a3 000 hour on-state and off-state hot-electron stress[C]//Proceedings of IEEE International Electron Devices Meeting.Tempe,USA,2005:590-593.

[4]VALIZADEH P,PAVLIDIS D,SHIOJIMA K,et al.Low frequency noise of AlGaN/GaN MODFETs:a comparative study of surface,barrier and heterointerface effects[J].Solid-State Electronics,2005,49(8):1352-1360.

[5]YANG W,YUAN J S,KRISHNAN B,et al.Characterization of deep and shallow traps in GaN HEMT using multi-frequency C-V measurement and pulse-mode voltage stress[J].IEEE Transactions on Device and Materials Reliability,2019,19(2):350-357.

[6] BOUSLAMA M,GILLET V,CHANG C,et al.Dynamic performance and characterization of traps using different measurements techniques for the new AlGaN/GaN HEMT of 0.15μm ultrashort gate length[J].IEEE Transactions on Microwave Theory and Techniques,2019,67(7):2475-2482.

[7]ZHENG X,FENG S W,ZHANG Y M,et al.A new differential amplitude spectrum for analyzing the trapping effect in GaN HEMTs based on the drain current transient[J].IEEE Transactions on Electron Devices,2017,64(4):1498-1504.

[8]JACKSON C M,AREHART A R,CINKILIC E,et al.Interface trap characterization of atomic layer deposition Al_2O_3/GaN metal-insulator-semiconductor capacitors using optically and thermally based deep level spectroscopies[J].Journal of Applied Physics,2013,113(20):204505.

[9]MARSO M,WOLTER M,JAVORKA P,et al.Investigation of buffer traps in an AlGaN/GaN/Si high electron mobility transistor by backgating current deep level transient spectroscopy[J].Applied Physics Letters,2003,82(4):633-635.

[10]JOH J,del ALAMO J A.A current-transient methodology for trap analysis for GaN high electron mobility transistors[J].IEEE Transactions on Electron Devices,2011,58(1):132-140.

[11]BISI D,MENEGHINI M,de SANTI C,et al.Deeplevel characterization in GaN HEMTs—partⅠ:advantages and limitations of drain current transient measurements[J].IEEE Transactions on Electron Devices,2013,60(10):3166-3175.

[12]JIANG S,ZHANG M,MENG X W,et al.Trap characterization of trench-gate SiC MOSFETs based on transient drain current[J].IEEE Transactions on Power Electronics,2023,38(5):6555-6565.

[13]KREMER R E,ARIKAN M C,ABELE J C,et al.Transient photoconductivity measurements in semiinsulating GaAs.I.an analog approach[J].Journal of Applied Physics,1987,62(6):2424-2431.

[14]FIORENZA P,GIANNAZZO F,ROCCAFORTE F.Characterization of SiO_2/4H-SiC interfaces in 4H-SiC MOSFETs:a review[J].Energies,2019,12(12):2310.

[15]FEIL M W,HUERNER A,PUSCHKARSKY K,et al.The impact of interfacial charge trapping on the reproducibility of measurements of silicon carbide MOSFET device parameters[J].Crystals,2020,10(12):1143.

[16]BASILE A F,ROZEN J,WILLIAMS J R,et al.Capacitance-voltage and deep-level-transient spectroscopy characterization of defects near SiO2/SiC interfaces[J].Journal of Applied Physics,2011,109(6):064514.

[17]AFANASEV V V,BASSLER M,PENSL G,et al.Intrinsic SiC/SiO_2 interface states[J].Physica Status Solidi Applied Research,1997,162(1):321-337.

[18]JIA Y F,LV H L,SONG Q W,et al.Influence ofoxidation temperature on the interfacial properties of n-type 4H-SiC MOS capacitors[J].Applied Surface Science,2017,397:175-182.

[19]ZHELEVA T,LELIS A,DUSCHER G,et al.Transition layers at the SiO_2/SiC interface[J].Applied Physics Letters,2008,93(2):022108.

[20]LI W B,ZHAO J J,WANG D J.Structural and electronic properties of the transition layer at the SiO_2/4H-SiC interface[J].AIP Advances,2015,5(1):017122.

[21]LELIS A J,GREEN R,HABERSAT D B.Thresholdvoltage instability in SiC MOSFETs due to nearinterfacial oxide traps[J].Materials Science Forum,2016,858:585-590.

[22]SHI L M,QIAN J S,JIN M,et al.Gate oxide relia-bility in silicon carbide planar and trench metal-oxidesemiconductor field-effect transistors under positive and negative electric field stress[J].Electronics,2024,13(22):4516.

基本信息:

DOI:10.13290/j.cnki.bdtjs.2025.05.005

中图分类号:TN386

引用信息:

[1]高博文,杜颖晨,张亚民.基于瞬态漏源电流变化的SiC MOSFET陷阱表征[J].半导体技术,2025,50(05):459-467.DOI:10.13290/j.cnki.bdtjs.2025.05.005.

基金信息:

国家自然科学基金重点项目(62334002);国家自然科学基金面上项目(62074009); 北京市自然科学基金-小米创新联合基金(L233023)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文