nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2003, 10, 27-32
超大规模集成电路制造中硅片化学机械抛光技术分析
基金项目(Foundation): 国家自然科学基金重大项目资助(50390061)
邮箱(Email):
DOI:
摘要:

目前半导体制造技术已经跨入0.13μm 和300mm时代,化学机械抛光(CMP)技术在ULSI制造中得到了快速发展,已经成为特征尺寸0.35μm以下IC制造不可缺少的技术。CMP是唯一能够实现硅片局部和全局平坦化的方法,但CMP的材料去除机理至今还没有完全理解、CMP系统过程变量和技术等方面的许多问题还没有完全弄清楚。本文着重介绍了化学机械抛光材料去除机理以及影响硅片表面材料去除率和抛光质量的因素。

Abstract:

Presently the semiconductor manufacturing technology has been entered the age of 0.13mmand 300mm. Chemical mechanical polishing has been widely used in the manufacture of ULSI and becomethe indispensable technology of feature size below 0.35mm in IC manufacturing. Chemical mechanicalpolishing is a solitary technology planarizing the wafer with local and global planarization, but the materialremoval mechanism of wafer CMP and the problems on process variables and technologies of CMP systemare not fully understood. In the paper, the material removal mechanism and factors of influencing materialremoval rate and wafer surface quality, in wafer CMP, are mainly introduced.

参考文献

[1]刘玉岭,檀柏梅,张楷亮.超大规模集成电路衬底材料性能及加工测试技术工程[M].冶金工业出版社,2002.

[2]HAHN P O.The300 mm silicon wafer-A cost andtechnology challenge[J].MicroelectronicEngineering,2001;56(1-2):3-13.

[3]GEHMAN B.L..In the age of300mm silicon, tech stan-dards are even more crucial[J].SolidStateTechnology,2001;44(8):128-127.

[4]LUO Q,RAMARAJAN S,BABU S V.Modification ofthePreston equation for the chemical mechanicalpolishing of copper[J].ThinSolidFilms,1998,335(1-2):160-167.

[5]DIPTO G T,DONALD W S,RONALD J G,et al.Three-dimension wafer-scale copper chemical mechanicalplanarization model[J].ThinSolidFilms,2002,414(1):78-90.

[6]YU T-K,YU C,MARIUS O.Combined asperity con-tact and fluid flow model for chemical-mechanicalpolishing[A].NumericalModeling ofProcesses andDevices forIntegratedCircuits,NUPAD V [C].1994.29-32.

[7]YU T-K,YU C,MARIUS O.A ststistic polishing padmodel for chemical-mechanical polishing[A].IEEEIEDM WashingtonDC[C].Dec,5-8,1993.865-868.

[8]CHEN J M,FANG Y-Ch.Hydrodynamic characteristicsof the thin fluid film in chemical-mechanical polishing[J].IEEE Transactions onSemiconductorManufacturing[J],2002,15(1):39-44.

[9]STAVREVA Z,ZEIDLER D,PLOTNER M,et al.Chemi-cal mechanical polishing of copper for multilevelmetallization[J].AppliedSurfaceScience,1995,91:192-196.

[10]STEIGERWALD J M,MURKA S P,GUTMANN R J,etal.Chemical processes in the chemical mechanicalpolishing of copper[J].MaterialChemistry andPhysics[J],1995,41(3):217-228.

[11]LUO J f,DOMFELD D A.Material removal mecha-nism in chemical mechanical polishing:Theory andmodeling[J].IEEE Transactions onSemiconductorManufacturing,2001,14(2):112-133.

[12]SHI F G,ZHAO B.Modeling of chemical-mechanicalpolishing with soft pads[J].AppliedPhysicsA(MaterialsScience&Processing),1998,67(2):249-252.

[13]KIM S K,YOON P W,PAIK U, et al.The effect ofagglomerated particle size on the chemical mechanicalplanarization for shallow trench isolation[J].Journal ofCe-ramicProcessingResearch,2002,3(4):278-281.

[14]RONALD C,JANOS F,RAHUL J.Initial study on opperCMP slurry chemistries[J].ThinSolidFilms,1995,266(2):238-244.

[15]LUO J f,DOMFELD D A.Material removal regions inchemical mechanical planarization for submicron in-tegrated circuit fabrication:Coupling effects of slurrychemicals, abrasive size distribution,and wafer-padcontact area[J].IEEE Transactions onSemiconduc-torManufacturing,2003,16(1):45-56.

[16]XIE Y S,BHUSHAN B.Effects of particle size,polish-ing pad and contact pressure in free abrasives polishing[J].Wear,1996,200(1-2):281-295.

[17]BURKE P A.Semi-Empirical modelling ofSiO2 chemi-cal-mechanical polishing planarization[A].VMICConference[C].June11-12,1991,379-384.

[18]WARNOCK J.A two-dimensional process model forchemimechanical polish planarization[J].JElectrochemSoc,1991,138(8):,2398-2402.

[19]ZHAO Y W,CHANG L.A micro-contact and wear modelfor chemical-mechanica polishing of silicon wafers[J].Wear,2002,252(3-4):220-226.

[20]FU G H,CHANDRA A,GUHA S,et al.A plasticity-based model of material removal in chemical–me-chanical polishing(CMP)[J].IEEE Transactions onSemiconductorManufacturing,2001,14(4):406-417.

[21]RUNNELS S R,EYMAN L M.Tribology analysis ofchemical-mechanical polishing[J].J ElectrochemSoc,1994,141(6):1698-1701.

[22]CHO C H,PARK S Sh,AHN Y.Three-dimensionalwafer scale hydrodynamic modeling for chemical me-chanical polishing[J].ThinSolidFilms,2001,389(1-2):254-260.

[23]RUNNELS S R.Feature-scale fluid-based erosion mod-eling for chemical-mechanical polishing[J].J.ElectrochemSoc,1994,141(7):1900-1904.

[24]SUNDARARAJAN S,THAKURTA D G,SCHWENDEMAN D W,et al.Two-dimensional wafer-scale chemical mechanical planarization models basedon lubrication theory and mass transport[J].Journalof the electrochemical society,1999,146(2):761-766.

[25]THAKURTA D.G,BORST C L,SCHWENDEMAN D.W, et al.Pad porosity, compressibility and slurrydelivery effects in chemicalmechanical planarization:modeling and experiments[J].ThinSolidFilms,2000,366(1-2):181-190.

[26]PARK S S,CHO C H,AHN Y.Hydrodynamic analysisof chemical mechanical polishing process[J].Tribo

基本信息:

DOI:

中图分类号:TN405

引用信息:

[1]苏建修,康仁科,郭东明.超大规模集成电路制造中硅片化学机械抛光技术分析[J].半导体技术,2003(10):27-32.

基金信息:

国家自然科学基金重大项目资助(50390061)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文